Survival and Growth of Restored Piedmont Riparian Forests as Affected by Site Preparation, Planting Stock, and Planting Aids

Sponsored by:

- Wetlands Studies and Solutions Incorporated,
- R.J. Reynolds Forest Research Extension Center,
- Virginia Tech Forest Resources and Environmental Conservation
 Department

C. M. Curtis, W.M. Aust, J.R. Seiler, B.D. Strahm

Introduction

- Created wetlands and restored wetlands are used to offset wetlands destroyed or severely disturbed by permitted activities.
- Wetland creation projects for forested wetlands have a relatively poor record of success and mitigation ratios of 2:1 or 3:1 have been used.

Introduction

- Common causes of forested wetland creation failures (e.g., low survival rates) include:
- Poor species selection
- Compacted soils
- Excessively wet site
- Lack of microtopography
- Low soil organic matter
- Acid conditions

(Daniels 2012)

Rationale

- Forest managers have successfully used mechanical site preparation to offset very poorly drained site conditions, severe soil compaction, and lack of microtopography since the 1950's. (≈ 60,000 acres in 2010).
- Little transfer of forest management research to forested wetland restoration projects.

Objectives

Subproject 1

Determine the influence of seed source and/or preconditioning treatments on survival and growth of *P. occidentalis* and *Q. phellos* on Piedmont riparian wetland mitigation sites.

Subproject 2 (Todays Talk)

Quantify effects of site preparation treatments, regeneration source, and/or planting aids on survival and growth of *P. occidentalis* and *Q. phellos* on Piedmont riparian wetland mitigation sites.

Species selection based on availability and desire to have species of rapid growth and mast production

Sycamore (Platanus occidentalis)

Willow Oak (Quercus phellos)

Study Site: RJ Reynolds Forest Research Extension Center

- Piedmont physiographic province, Patrick Co., Va.
- Tobacco plantation from 1840's 1950's

Study Site: RJ Reynolds Forest Research Extension Center

- Piedmont Physiographic province, Patrick Co., Va.
- Tobacco plantation from 1840's 1950's
- Study site is excessively wet, compacted by agriculture, research, and lacking microtopography.

Subproject 1

- Seed Source and Preconditioning Study
 - Objective: Determine the influence of seed source and/or preconditioning on survival and growth of *P. occidentalis* and *Q. phellos* on Piedmont riparian wetland mitigation sites.

Seed Sources

Appomattox, Pittsylvania, and Nelson Counties

All located in the Piedmont region of Virginia

■ Sources:

■ Dry (Upland areas)

■ Wet (Bottomland areas)

Cultural Treatments

■ Control: Seedlings watered daily

■ Flood: Seedlings saturated in water for multiple days, followed by one day of drying.

Drought: Seedling drought stressed to visible wilting

Seedling Establishment

- Seedlings were established in the Virginia Tech greenhouse in January 2011
 - Seedlings were allowed to grow for 2 months
 before preconditioning treatments were started
- Preconditioning occurred from March-April 2011
- Seedlings were transplanted to Reynolds
 Homestead in mid-April 2011

Project Location

Data Analysis

- Conducted after greenhouse treatments
- 5 sample seedlings from each seed source*treatment
 - Height, diameter, leaf area, and root length were obtained and used for preliminary analysis

Outplanting Data Collection

■ January – February 2012, November 2012

■ Measured Survival (Yes/No), heights (cm), and

diameters (cm)

Results

■ Fincastle upland site had the best survival and growth for Sycamore. <u>Provenance matters</u>.

■ Few significant effects of cultural treatments during Year one.

No significant effects of cultural treatments by end of second growing season.

Percent survival after first growing season of tubelings as impacted by nursery

	Sycamore	Willow oak	
Virginia Tech	83%	86%	
WSSI	71%	45%	

Subproject 2 Objectives

Quantify effects of **site preparation** treatments, **regeneration source**, and/or **planting aids** on survival and growth of *P. occidentalis* and *Q. phellos* on Piedmont riparian wetland mitigation sites.

Experimental Design for each species

Randomized Complete Block Design with Split-Split Plot

- 5 blocks
- 5 site preparation methods
- 4 regeneration sources
- 3 planting aids
- 4 stems of each combination
- ≈1200 stems for each species

Project Layout

- Odd numbers- Sycamore
- Even numbers Willow Oak

Soils

Augusta: fine-loamy, mixed semiactive, thermic Aeric

Endoaquults

Roanoke: fine, mixed, semiactive, thermic Typic Endoaquults

French: fine loamy over sandy, mixed, active mesic Fluvaquentic Dystrudepts

4 (5*) Site Preparation Treatments – Flat Planting/Disk

Flat Plant -Disk

Bed

Rip

Pit and Mound*

4 Regeneration Sources

Direct Seed

Gallon

Bare Root

Tubeling

3 Planting Aids

Tubex Tubes

None

VisporeMats

Example of 4
Regeneration Sources x
3 Plantings Aids and 4
seedings within 1 site
preparation plot.

Each of 5 site preparation treatments are replicated 5 times for each species.

Gallon (Mat)	Gallon (Control)	Direct Seed (Control) X	Bare Root (Mat)
A	A	X	•
A	A	X	•
A	A	X	•
Tubeling (Control)	Tubeling (Tube)	Tubeling (Mat)	Direct Seed (Tube) X
	-	-	X
	-	-	X
	-	-	X
Direct Seed (Mat) X	Bare Root (Tube)	Bare Root (Control)	Gallon (Tube) ▲
X	•	•	A
X	•	•	A
X	•	•	A

Planting and Culture

- Planting conducted May 2011
- Planting Aids installed June 2011
- Minimal herbaceous control, summer 2011, 2012
- Measurements conducted in late fall 2011, 2012
 - Survival
 - **■** Ground-line diameter
 - Total height
 - Biomass index (d²h)

May 2011 following planting

Planting and Culture

- Planting conducted May 2011
- Planting Aids installed June 2011
- Minimal herbaceous control, summer 2011, 2012
- Measurements conducted in late fall 2011, 2012
 - Survival
 - **■** *Ground-line diameter*
 - Total height
 - Biomass index (d²h)

January 2012 following one growing season

Survival % by Site Preparation

Sycamore

Yr 1 p < 0.0001, Yr 2 p = 0.0561

Willow Oak Yr 1 p < 0.0001, Yr 2 p < 0.0001

Survival % by Regeneration Source

Sycamore

Yr 1 p < 0.0001, Yr 2 p = 0.0001

Willow Oak

Yr 1 p < 0.0001, Yr 2 p < 0.0001

Survival % by Planting Aid

Sycamore

Willow Oak

Yr 1 p = 0.006, Yr 2 p < 0.0001 Yr 1 p value < 0.0001, yr 2 p < 0.0001

Biomass Index (cm³)by Site Preparation

Sycamore

Willow Oak

Yr 1 p = 0.0001, Yr 2 p < 0.0001 Yr 1 p value < 0.0001, Yr 2 p < 0.1507

Biomass Index (cm³)by Regeneration Source

Sycamore

Yr 1 p = 0.0001, Yr 2 p < 0.0001

Willow Oak

Yr 1 p value < 0.0001, Yr 2 p < 0.2038

Biomass Index (cm³)by Planting Aid

Sycamore

Willow Oak

Yr 1 p = 0.6370, Yr 2 p < 0.0144 Yr 1 p value < 0.3323, Yr 2 p < 0.0011

Sycamore performance index at 2 years (biomass x % survival)

Source-Aid	FLAT	RIP	BED	PIT	MOUND
Seed-None	1	156	17	1	337
Seed-Mat	1	438	112	76	76
Seed-Tube	2	3	25	7	11
Bare-None	557	550	670	138	2023
Bare-Mat	426	530	770	257	1370
Bare-Tube	402	451	250	92	852
Tubeling-None	645	1523	2238	382	2234
Tubeling-Tube	721	831	1084	443	874
Tubeling-Mat	893	1616	1799	875	3119
Gallon-None	2192	2208	1923	1803	3113
Gallon-Tube	1684	2038	2735	1393	3456
Gallon-Mat	1592	1905	3532	2042	6234

Willow oak performance index at 2 years (biomass x % survival)

Source-Aid	FLAT	RIP	BED	PIT	MOUND
Seed-None	111	4	4	0	5
Seed-Mat	20	86	10	0	31
Seed-Tube	1	10	15	1	39
Bare-None	398	748	1541	145	1624
Bare-Mat	2173	516	1015	76	1025
Bare-Tube	669	674	787	237	1424
Tubeling-None	52	127	33	0	153
Tubeling-Tube	101	108	38	45	118
Tubeling-Mat	116	53	13	8	390
Gallon-None	727	1067	987	287	1480
Gallon-Tube	676	985	1157	518	1354
Gallon-Mat	888	972	1168	446	1201

Conclusions after 2 growing seasons

- For Sycamore
 - Mound > Bed >>> Rip >>> Flat>>> Pit
 - Gallon >>> Tubelings = Bare root > Seed
 - Planting aid results were not convincing

- Mounding and Bedding performed well
- Overall, Bare root with mats and Gallon performed well.

Why Mounding?

Microsites

- Greater rooting volume of loosened soil
- Mixed horizons caused coarser texture
- Provided some competition control
- Enhanced survival
- Additional faunal habitats
- Potential Problems:
 - Cost and available contractors

Questions

